Lecture 4 Continuous-time Queues

Yin Sun

Dept. Electrical and Computer Engineering

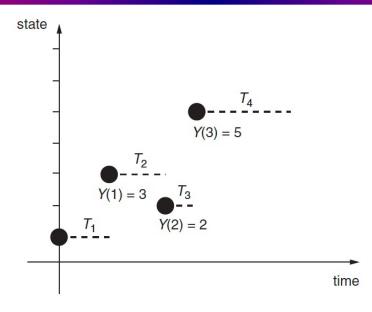
Outline

- Continuous-time Markov Chains
 - Reading: Section 9.1 of Srikant & Ying
- Little's Law & M/M/1 Queue
 - R. Srikant and Lei Ying, *Communication Networks: An Optimization Control and Stochastic Networks Perspective*, Cambridge University Press, 2014.

Continuous-time Markov Chains

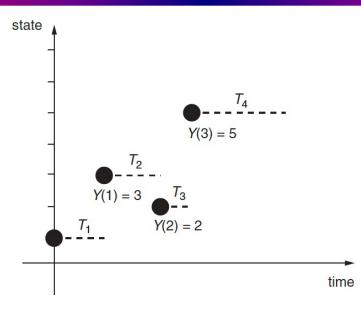
- A stochastic process {X(t)} is a Continuous-Time Markov Chain (CTMC) if the following conditions hold:
 - (i) t belongs to some interval of \mathcal{R} ;
 - (ii) $X(t) \in S$, where S is a countable set; and
 - (iii) $\Pr(X(t + s)|X(u), u \le s) = \Pr(X(t + s)|X(s))$, i.e., the conditional probability distribution at time t + s, given the complete history up to time s, depends only on the state of the process at time s.
- A CTMC is said to be *time homogeneous* if Pr(X(t + s)|X(s)) is independent of *s*, i.e., the conditional probability distribution is time independent.

Time to Stay in a State



- **Theorem 9.1.1** The time to stay in any state $i \in S$ of a timehomogeneous CTMC is exponentially distributed.
 - Proof. See p. 230 of Srikant & Ying

Time to Stay in a State (2)



- Time-homogeneous CTMC can also be described as follows.
 - (i) During each visit to state *i*, the CTMC spends an exponentially distributed amount of time in this state. We let 1/q_i denote the mean time spent in state *i*.
 - (ii) After spending an exponentially distributed amount of time in state *i*, the CTMC moves to state $j \neq i$ with probability P_{ij} .

Non-explosiveness CTMCs

- We assume that the number of transitions in a finite time interval is finite with probability 1.
- One can construct CTMCs with strange behavior if we do not assume this condition.
- This condition is called *non-explosiveness*.

Transition Rate Matrix

• Let p(t) denote a vector of probabilities with

$$p_i(t) = \Pr(X(t) = i).$$

There exists a transition rate matrix Q such that

$$\dot{p}_i(t) = Q_{ii} p_i(t) + \sum_{j \neq i} Q_{ji} p_j(t)$$

• Written in matrix form:

$$\dot{p}(t) = p(t) Q$$

- See p. 231 Srikant & Ying for derivations
- Transition rate matrix \boldsymbol{Q} completely describes the CTMC, along with p(0).
 - Given Q, we need not specify q_i and P_{ij}

Transition Rate Matrix (2)

• Transition rate matrix **Q** satisfies

 $Q_{ii} \leq 0$ $Q_{ij} \geq 0 \text{ for } i \neq j$ $\sum_{j} Q_{ij} = 0$

- Intuition:
 - Probability reduction in state *i*, due to transitions from state *i* to the other states = total probability growth of the other states, due to transitions from state *i* to the other states

The following questions are important in the study of CTMC.

- Does there exist a distribution vector π so that $0 = \pi Q$?
 - If it exists, it is called a stationary distribution.

• If there exists a unique stationary distribution, does convergence $\lim_{t\to\infty} p(t) = \pi \text{ hold for all } p(0) \text{?}$

Irreducible CTMCs

Definition 9.1.1 (Irreducibility) A CTMC is said to be irreducible if, given any two states *i* and *j*,

$$\Pr(X(t) = j | X(0) = i) > 0$$

for some finite *t*.

 Note that there is no concept of aperiodicity for CTMCs because state transitions can happen at any time.

Finite-State-Space CTMCs

 The following theorem states that a CTMC has a unique stationary distribution if it is irreducible and has a finite state space.

Theorem 9.1.2 A finite-state-space, irreducible CTMC has a unique stationary distribution π and $\lim_{t\to\infty} p(t) = \pi$, $\forall p(0)$.

- For a finite-state-space, irreducible CTMC, the stationary distribution can be computed by finding a $\pi \ge 0$ such that $\pi Q = 0$ and $\sum_i \pi_i = 1$.
- Finite state space + irreducible + CTMC→ existence + uniqueness + convergence to stationary distribution

Infinite-State-Space CTMCs

- If the state space is infinite, irreducibility is not sufficient to guarantee that the CTMC has a unique stationary distribution.
- Exercise 1. Consider a CTMC X(t) with the state space to be integers. The transition rate matrix Q is

$$Q_{ij} = \begin{cases} 1, & \text{if } j = i + 1, \\ 1, & \text{if } j = i - 1, \\ -2, & \text{if } j = i, \\ 0, & \text{otherwise.} \end{cases}$$

- Is it irreducible?
- What is its stationary distribution?

Positive Recurrent CTMCs

 Similar to DTMCs, we introduce the notion of recurrence and conditions beyond irreducibility to ensure the existence of stationary distributions.

Definition 9.1.2 Assuming X(0) = i, the *recurrence time* is the first time the CTMC returns to state *i* after it leaves the state. Recall that the amount of time spent in state *i* is defined as

$$\gamma_i = \inf\{t > 0 : X(t) \neq i \text{ and } X(0) = i\}.$$

The recurrence time τ_i is defined as

$$\tau_i = \inf\{t > \gamma_i : X(t) = i \text{ and } X(0) = i\}.$$

State *i* is called *recurrent* if

$$\Pr(\tau_i < \infty) = 1,$$

and transient otherwise.

A recurrent state is *positive recurrent* if $E[\tau_i] < \infty$, and is *null recurrent* if $E[\tau_i] = \infty$.

Positive Recurrent CTMCs (2)

Lemma 9.1.3 For an irreducible CTMC, if one state is positive recurrent (null recurrent), all states are positive recurrent (null recurrent). Further,

$$\lim_{t\to\infty}p_i(t)=\frac{1}{E[\tau_i](-Q_{ii})},$$

which holds even when $E[\tau_i] = \infty$.

Theorem 9.1.4 Consider an irreducible and non-explosive CTMC. A unique stationary distribution $\pi \ge 0$ (i.e., $\sum_i \pi_i = 1$ and $\pi \mathbf{Q} = 0$) exists if and only if the CTMC is positive recurrent.

This theorem states that if we can find a vector $\pi \ge 0$ such that $\pi \mathbf{Q} = 0$ and $\sum_i \pi_i < \infty$, and the CTMC is non-explosive, the CTMC is positive recurrent. Note that if $\sum_i \pi_i \ne 1$, we can define $\tilde{\pi}_i = \pi_i / \sum_j \pi_j$, and $\tilde{\pi}$ is a stationary distribution.

Theorem 9.1.5 If there exists a π such that $\pi \mathbf{Q} = 0$ and $\sum_i \pi_i = \infty$ for an irreducible CTMC, the CTMC is not positive recurrent and

$$\lim_{t \to \infty} p_i(t) = 0$$

for all *i*.

Global Balance Equation

 The following lemma presents an alternative characterization of the equation that has to be satisfied by the stationary distribution of a CTMC.

Lemma 9.1.6 $\pi \mathbf{Q} = 0$ is equivalent to

$$\sum_{i \neq j} \pi_i Q_{ij} = \pi_j \sum_{i \neq j} Q_{ji}, \quad \forall j.$$
(9.1)

- This equation is called the global balance equation.
- Intuition:
 - total rate of transitions into state j = total rate of transitions out of state j.
 - Proven based on $\sum_{j} Q_{ij} = 0$

Local Balance Equation

 Local Balance Equation is a sufficient condition of the global balance equation

Lemma 9.1.7 The global balance equation holds if

$$\pi_i Q_{ij} = \pi_j Q_{ji}, \qquad \forall i \neq j. \tag{9.2}$$

Intuition:

- Rate of transitions from state *i* to state *j* = rate of transitions from state *j* to state *i*
- It is possible to have a stationary distribution π that satisfies the global balance equation, but not the local balance equation.

Foster-Lyapunov Theorem

- Often it is difficult to find the π to satisfy either the global or the local balance equation.
- In the applications it is important to know whether π exists, even if we cannot find it explicitly.
- Similar to the Foster–Lyapunov theorem for DTMCs, the following Foster–Lyapunov theorem for CTMCs provides another sufficient condition for a CTMC to be positive recurrent.

Theorem 9.1.8 (Foster–Lyapunov theorem for CTMCs) Suppose X(t) is irreducible and non-explosive. If there exists a function $V : S \to \mathbb{R}^+$ such that

(1) $\sum_{j \neq i} Q_{ij}(V(j) - V(i)) \leq -\epsilon$ if $i \in \mathcal{B}^c$, and (2) $\sum_{i \neq i} Q_{ij}(V(j) - V(i)) \leq M$ if $i \in \mathcal{B}$,

for some $\epsilon > 0, M < \infty$, and a bounded set \mathcal{B} , then X(t) is positive recurrent.

Summary

- Transition rate matrix \boldsymbol{Q} , $\dot{p}(t) = p(t)\boldsymbol{Q}$
- Key questions for CTMCs
 - Existence of stationary distribution ?
 - Convergence to unique stationary distribution ?
- Finite-state-space CTMCs
 - Irreducible → existence + uniqueness + convergence
- Countable-state-space CTMCs
 - Foster-Lyapunov → positive recurrent
 - Irreducible + positive recurrent → existence + uniqueness + convergence
- Reading: Section 9.1 of Srikant & Ying